Billiard and the five-gap theorem
نویسندگان
چکیده
Let us consider the interval [0, 1) as a billiard table rectangle with perimeter 1 and a sequence F(m) ∈ [0, 1),m ∈ N ∪ {0}, of successive rebounds of a billiard ball against the sides of a billiard rectangle. We prove that if I is an open segment of a billiard rectangle, then the differences between the successive values of m for which the F(m) lies in I , take at most one even and at most four distinct odd values. © 2009 Elsevier B.V. All rights reserved.
منابع مشابه
بررسی فرایند نورد متقارن ورق های سه لایه با استفاده از تابع جریان و تئوری حد بالا
In this paper, a mathematical model for symmetrical multi-layer sheet rolling, in which the layers are unbounded before rolling, by using the upper bound method and stream function theorem is proposed. Using this model, we can investigate the plastic deformation behavior of sheets at the roll gap during rolling. Effect of various rolling conditions such as initial and final thickness and flow s...
متن کاملSpectral analysis of the transfer operator for the Lorentz gas
We study the billiard map associated with both the finiteand infinite-horizon Lorentz gases having smooth scatterers with strictly positive curvature. We introduce generalized function spaces (Banach spaces of distributions) on which the transfer operator is quasicompact. The mixing properties of the billiard map then imply the existence of a spectral gap and related statistical properties such...
متن کاملMonoids in the fundamental group . . .
We study monoids generated by Zariski-van Kampen generators in the 17 fundamental groups of the complement of logarithmic free divisors in C listed by Sekiguchi (Theorem 1). Five of them are Artin monoids and eight of them are free abelian monoids. The remaining four monoids are not Gaußian and, hence, are neither Garside nor Artin (Theorem 2). However, we introduce, similarly to Artin monoids,...
متن کاملPoncelet’s theorem and Billiard knots
Let D be any elliptic right cylinder. We prove that every type of knot can be realized as the trajectory of a ball in D. This proves a conjecture of Lamm and gives a new proof of a conjecture of Jones and Przytycki. We use Jacobi’s proof of Poncelet’s theorem by means of elliptic functions. keywords: Poncelet’s theorem, Jacobian elliptic functions, Billiard knots , Lissajous knots, Cylinder kno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009